Datenblatt: Leitungsschutzschalter, Serie BMSO, 10kA

SCHRACK-INFO

- Isolierter Fehlsteckschutz
- Lift- und Maulklemme beidseitig
- Hohe Selektivität durch geringe Durchlassenergien
- Sichtfenster mit zwangsgeführten Kontaktstellungsanzeige je Pol
- Klemmquerschnitt: $1 \mathrm{~mm}^{2}$ bis $25 \mathrm{~mm}^{2}$
- Erfüllt die Anforderungen der Isolationskoordination, Kontaktabstand 4 mm
- Netzspannungsanschluss beliebig (oben/unten)
- Einbau lageunabhängig
- Technische Daten

Bemessungsspannung/Frequenz:	$230 \mathrm{~V} / 400 \mathrm{VAC}, 50 \mathrm{~Hz}$
DC-Bemessungsspannung (je Polstrecke mit Auslöser):	max. 48 VDC
Normauslösung:	$-5^{\circ} \mathrm{C}$ bis $+40^{\circ} \mathrm{C}$
Max. Umgebungstemperatur:	$-40^{\circ} \mathrm{C}$ bis $+75^{\circ} \mathrm{C}$
Zulässige Vorsicherung:	max. 125 A Kennlinie gG/gL, > 10 kA
Selektivitätsklasse:	3
Bemessungsschaltvermögen:	10 kA gem. IEC/EN 60 898, max. 15 kA gem. EN 60947-2
Schutzart:	IP 20
Verschmutzungsgrad	2 nach EN 60947-2
Auslösecharakteristik:	B, C, D
Lebensdaver:	8000 Stellungswechsel
Finger / Handrückensicher:	nach VBG 4 / ÖVE EN 6
Klemmenanzugsdrehmoment:	2-2,4 Nm

Auslösecharakteristik BMSO, Charakteristik B, C und D

Auslösecharakteristik BMSO, Charakteristik B, C und D

	ambient temperature $\mathrm{T} /$ Umgebungstemperatur $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$																
I_{N}	-40	-30	-20	-10	0	10	20	30	35	40	45	50	55	60	65	70	75
0,5 A	0,64	0,62	0,60	0,58	0,56	0,54	0,52	0,50	0,49	0,48	0,47	0,46	0,45	0,44	0,43	0,42	0,41
1 A	1,3	1,2	1,2	1,2	1,1	1,1	1,0	1,0	0,99	0,97	0,95	0,93	0,90	0,89	0,87	0,85	0,83
2 A	2,6	2,5	2,4	2,3	2,2	2,2	2,1	2,0	2,0	1,9	1,9	1,9	1,8	1,8	1,7	1,7	1,7
3 A	3,8	3,7	3,6	3,5	3,4	3,3	3,1	3,0	3,0	2,9	2,8	2,8	2,7	2,7	2,6	2,5	2,5
4 A	5,1	5,0	4,8	4,7	4,5	4,3	4,2	4,0	3,9	3,9	3,8	3,7	3,6	3,5	3,5	3,4	3,3
6 A	7.7	7,5	7,2	7,0	6.7	6,5	6,3	6,0	5,9	5,8	5,7	5,6	5,4	5,3	5,2	5,1	5,0
10A	13	12	12	12	11	11	10	10	9,9	9,7	9,5	9,3	9,0	8,9	8,7	8,5	8,3
13 A	17	16	16	15	15	14	14	13	13	13	12	12	12	12	11	11	11
16 A	20	20	19	19	18	17	17	16	16	15	15	15	14	14	14	14	13
20 A	26	25	24	23	22	22	21	20	20	19	19	19	18	18	17	17	17
25 A	32	31	30	29	28	27	26	25	25	24	24	23	23	22	22	21	21
32 A	41	40	38	37	36	35	33	32	32	31	30	30	29	28	28	27	26
40 A	51	50	48	47	45	43	42	40	39	39	38	37	36	35	35	34	33
50 A	64	62	60	58	56	54	52	50	49	48	47	46	45	44	43	42	41
63 A	81	78	76	73	71	68	66	63	62	61	60	58	57	56	55	53	52

Auslösecharakteristik Einfluss der Netzfrequenz auf das Auslöseverhalten $I_{\text {MA }}$ des Schnellauslösers

	Netzfrequenz f [Hz]							
	$16^{2 / 3}$	50	60	100	200	300	400	
$\mathrm{I}_{\mathrm{MA}}(\mathrm{f}) / \mathrm{I}_{\mathrm{MA}}(50 \mathrm{~Hz})[\%]$	91	100	101	106	115	134	141	

Gesamt-Verlustleistung bei I_{N}

B- Charakteristik

	$\mathbf{1 p}$	$\mathbf{1 p N}$	$\mathbf{2 p}$	$\mathbf{3 p}$	$\mathbf{3 p} \mathbf{N}^{*}$
$\mathbf{I n} \mathbf{[A]}$	$\mathbf{P}[\mathbf{W}]$	$\mathbf{P}[\mathbf{W}]$	$\mathbf{P}[\mathbf{W}]$	$\mathbf{P}[\mathbf{W}]$	\mathbf{P} [W]
$\mathbf{1}$	1.6	1.7	3.1	4.7	4.8
$\mathbf{1 . 5}$	2.3	2.5	4.6	6.9	7.2
$\mathbf{1 . 6}$	2.5	2.7	4.9	7.4	7.6
$\mathbf{2}$	1.4	1.5	2.8	4.1	4.3
$\mathbf{2 . 5}$	1.5	1.7	3.1	4.6	4.7
$\mathbf{3}$	2.5	2.7	5.0	7.6	7.8
$\mathbf{3 . 5}$	2.5	2.8	5.1	7.8	8.0
$\mathbf{4}$	1.4	1.6	2.9	4.4	4.5
$\mathbf{5}$	1.9	2.1	3.8	5.8	6.0
$\mathbf{6}$	1.8	2.0	3.6	5.5	5.6
$\mathbf{8}$	2.1	2.3	4.1	6.3	6.5
$\mathbf{1 0}$	1.9	2.1	3.9	5.9	6.1
$\mathbf{1 2}$	2.8	3.2	5.9	8.7	9.0
$\mathbf{1 3}$	2.5	2.9	5.3	7.8	8.1
$\mathbf{1 5}$	2.1	2.4	4.4	6.5	6.7
$\mathbf{1 6}$	2.2	2.6	4.7	6.9	7.2
$\mathbf{2 0}$	3.2	3.6	6.6	9.8	10.1
$\mathbf{2 5}$	3.0	3.5	6.4	9.4	9.7
$\mathbf{3 2}$	3.7	4.4	8.1	12.1	12.5
$\mathbf{4 0}$	3.4	4.1	7.5	11.2	11.5
$\mathbf{5 0}$	4.5	5.4	9.9	14.9	15.3
$\mathbf{6 3}$	5.2	6.3	11.5	17.2	17.7

*symmetrische Last

C- Charakteristik

	$1 p$	1 pN	2p	$3 p$	$3 \mathrm{pN}{ }^{*}$
\ln [A]	P [W]				
0.16	2.2	2.4	4.4	6.7	6.9
0.25	2.0	2.2	4.0	6.1	6.3
0.5	1.2	1.3	2.4	3.5	3.7
0.75	1.3	1.4	2.6	3.9	4.1
1	1.6	1.7	3.1	4.7	4.8
1.5	1.5	1.6	2.9	4.4	4.6
1.6	1.6	1.7	3.1	4.7	4.9
2	1.4	1.5	2.8	4.1	4.3
2.5	1.5	1.7	3.1	4.6	4.7
3	1.2	1.3	2.4	3.6	3.7
3.5	1.3	1.4	2.6	3.9	4.0
4	1.4	1.6	2.9	4.4	4.5
5	1.9	2.1	3.8	5.8	6.0
6	1.5	1.6	2.9	4.4	4.6
8	2.1	2.3	4.1	6.3	6.5
10	1.5	1.7	3.0	4.6	4.7
12	2.1	2.4	4.4	6.5	6.8
13	2.5	2.9	5.3	7.8	8.1
15	2.1	2.4	4.4	6.5	6.7
16	2.2	2.6	4.7	6.9	7.2
20	3.2	3.6	6.6	9.8	10.1
25	3.0	3.5	6.4	9.4	9.7
32	3.7	4.4	8.1	12.1	12.5
40	3.4	4.1	7.5	11.2	11.5
50	4.5	5.4	9.9	14.9	15.3
63	5.2	6.3	11.5	17.2	17.7

*symmetrische Last

D- Charakteristik

	1p	1pN	2p	3p	$3 \mathrm{pN} *$
\ln [A]	P [W]				
0.5	1.2	1.3	2.4	3.5	3.7
1	0.8	0.9	1.6	2.4	2.5
1.5	1.2	1.3	2.3	3.5	3.6
1.6	1.3	1.4	2.5	3.8	3.9
2	1.0	1.1	2.0	3.0	3.1
2.5	1.0	1.1	1.9	2.9	3.0
3	1.2	1.3	2.4	3.6	3.7
3.5	1.3	1.4	2.6	3.9	4.0
4	1.4	1.6	2.9	4.4	4.5
5	1.7	1.8	3.3	5.1	5.3
6	1.5	1.6	2.9	4.4	4.6
8	1.3	1.5	2.6	4.0	4.2
10	1.5	1.7	3.0	4.6	4.7
12	1.7	2.0	3.6	5.3	5.4
13	1.9	2.2	4.0	5.9	6.1
15	2.1	2.4	4.4	6.5	6.7
16	2.2	2.6	4.7	6.9	7.2
20	2.0	2.2	4.1	6.1	6.2
25	2.5	2.9	5.2	7.7	7.9
32	3.4	4.0	7.4	11.1	11.4
40	3.2	3.8	7.0	10.4	10.7

*symmetrische Last

Innenwiderstand (bei RT)

B- Charakteristik

$\operatorname{In}[A]$	$Z^{*}[m \Omega]$	$R[m \Omega]$
$\mathbf{1}$	1120	1102
$\mathbf{1 . 5}$	922	912
$\mathbf{1 . 6}$	922	912
$\mathbf{2}$	335	333
$\mathbf{2 . 5}$	234	230
$\mathbf{3}$	211	208
$\mathbf{3 . 5}$	184	180
$\mathbf{4}$	87.7	87.2
$\mathbf{5}$	73.5	72.8
$\mathbf{6}$	46.8	46.3
$\mathbf{8}$	30.5	30.4
$\mathbf{1 0}$	17.5	17.4
$\mathbf{1 2}$	16.9	16.8
$\mathbf{1 3}$	13.4	13.3
$\mathbf{1 5}$	8.0	7.9
$\mathbf{1 6}$	8.0	7.9
$\mathbf{2 0}$	7.2	7.1
$\mathbf{2 5}$	5.0	4.9
$\mathbf{3 2}$	3.7	3.7
$\mathbf{4 0}$	2.6	2.5
$\mathbf{5 0}$	2.1	2.1
$\mathbf{6 3}$	2.0	2.0
$\mathbf{7}$		

* 50 Hz

C- Charakteristik

$\ln [A]$	$Z^{*}[\mathrm{~m} \Omega]$	$\mathrm{R}[\mathrm{m} \Omega]$
$\mathbf{0 . 1 6}$	68500	68300
$\mathbf{0 . 2 5}$	27500	27400
$\mathbf{0 . 5}$	4680	4670
$\mathbf{0 . 7 5}$	2280	2250
$\mathbf{1}$	1120	1100
$\mathbf{1 . 5}$	589	587
$\mathbf{1 . 6}$	589	587
$\mathbf{2}$	335	333
$\mathbf{2 . 5}$	234	230
$\mathbf{3}$	131	130
$\mathbf{3 . 5}$	143	141
$\mathbf{4}$	87.7	87.2
$\mathbf{5}$	73.5	72.8
$\mathbf{6}$	39.3	39.1
$\mathbf{8}$	30.5	30.4
$\mathbf{1 0}$	14.1	14.0
$\mathbf{1 2}$	13.5	13.4
$\mathbf{1 3}$	13.4	13.3
$\mathbf{1 5}$	8.0	7.9
$\mathbf{1 6}$	8.0	7.9
$\mathbf{2 0}$	7.2	7.1
$\mathbf{2 5}$	5.0	4.9
$\mathbf{3 2}$	3.7	3.7
$\mathbf{4 0}$	2.6	2.5
$\mathbf{5 0}$	2.1	2.1
$\mathbf{6 3}$	2.0	2.0

* 50 Hz

D- Charakteristik

$\operatorname{In}[\mathrm{A}]$	$\mathrm{Z}^{*}[\mathrm{~m} \Omega]$	$\mathrm{R}[\mathrm{m} \Omega]$
$\mathbf{0 . 5}$	4680	4670
$\mathbf{1}$	772	770
$\mathbf{1 . 5}$	512	508
$\mathbf{1 . 6}$	512	508
$\mathbf{2}$	250	249
$\mathbf{2 . 5}$	153	153
$\mathbf{3}$	131	130
$\mathbf{3 . 5}$	143	141
$\mathbf{4}$	87.7	87.2
$\mathbf{5}$	65.4	65.1
$\mathbf{6}$	39.3	39.1
$\mathbf{8}$	19.5	19.5
$\mathbf{1 0}$	14.1	14.0
$\mathbf{1 2}$	11.3	11.2
$\mathbf{1 3}$	10.1	10.1
$\mathbf{1 5}$	8.0	7.9
$\mathbf{1 6}$	8.0	7.9
$\mathbf{2 0}$	4.9	4.9
$\mathbf{2 5}$	3.9	3.8
$\mathbf{3 2}$	3.5	3.4
$\mathbf{4 0}$	2.7	2.6

* 50 Hz

Maximale Durchlassenergie

B- Charakteristik

C- Charakteristik

D- Charakteristik

- Maximale Durchlassstrom

B- Charakteristik

prospektiver Kurzschlussstrom [A]

C- Charakteristik

prospektiver Kurzschlussstrom [A]

D- Charakteristik

Kurzschlussselektivität zu D0-Schmelzsicherungen

	Kurzschlussselektivität BMSO-B.. ZU Schmelzsicherungs-Einsatz DIAZED* Im Kurzschlussfall besteht zwischen den LS-Schaltern BMS0-B.. und den vorgeschaltenen Schmelzsicherungen Selektivität bis zu den angegebenen Werten des Selektivitätsgrenzstromes $I_{s}[k A]$ (d.h. bei auftretenden Kurzschlussströmen $I_{k s}$ unter I_{s} löst nur der LS-Schalter aus, bei Kurzschlussströmen darüber sprechen beide Schutzorgane an). *) nach EN 60898 D.5.2.b								
BMSO	DIAZED DII-DIV gl/gG								
$\mathrm{In}_{\mathrm{n}}[\mathrm{A}]$	10	16	20	25	35	50	63	80	100
1.0	$<0.5^{1)}$	1.2	$10.0^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$
1.5	$<0.5^{1)}$	1.0	$10.0{ }^{2)}$	$10.0^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0^{2)}$
2.0	$<0.5^{1)}$	$<0.5{ }^{1)}$	0.8	1.6	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0^{2)}$
2.5	$<0.5^{1)}$	$<0.5{ }^{1)}$	0.8	1.5	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$
3.0	$<0.5^{1)}$	<0.5 ${ }^{\text {1) }}$	0.8	1.4	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0^{2)}$
3.5	$<0.5^{1)}$	$<0.5{ }^{1)}$	0.7	1.3	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$
4	$<0.5^{1)}$	$<0.5{ }^{1)}$	0.6	1.0	3.6	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$	$10.0{ }^{2)}$
5	$<0.5^{1)}$	$<0.5{ }^{\text {1) }}$	0.6	0.9	2.0	3.5	8.5	$10.0{ }^{2)}$	$10.0{ }^{2)}$
6		<0.5 ${ }^{\text {1) }}$	0.6	0.9	1.8	3.2	7.4	$10.0{ }^{2)}$	$10.0{ }^{2)}$
8		$<0.5{ }^{\text {1) }}$	0.5	0.8	1.6	2.6	5.2	8.3	$10.0{ }^{2)}$
10			0.5	0.8	1.4	2.2	3.9	6.0	$10.0{ }^{2)}$
13			0.5	0.7	1.3	2.0	3.6	5.4	$10.0{ }^{2)}$
16				0.6	1.2	1.9	3.2	4.6	8.4
20					1.2	1.8	3.1	4.4	7.8
25					1.2	1.8	3.0	4.2	7.3
32						1.7	2.8	3.9	6.8
40							2.7	3.8	6.5
50							2.5	3.5	5.7
63									5.3

[^0]| | Kurzschlussselektivität BMSO-C..
 ZU
 Schmelzsicherungs-Einsatz DIAZED*
 Im Kurzschlussfall besteht zwischen den LS-Schaltern BMS0-C.. und den vorgeschaltenen Schmelzsicherungen Selektivität bis zu den angegebenen Werten des Selektivitätsgrenzstromes $I_{s}[k A]$ (d.h. bei auftretenden Kurzschlussströmen $I_{k s}$ unter I_{s} löst nur der LS-Schalter aus, bei Kurzschlussströmen darüber sprechen beide Schutzorgane an).
 *) nach EN 60898 D.5.2.b | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BMSO | DIAZED DII-DIV gl/gG | | | | | | | | |
| In_{n} [A] | 10 | 16 | 20 | 25 | 35 | 50 | 63 | 80 | 100 |
| 0.75 | 1.0 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{27}$ |
| 1.0 | $<0.5{ }^{1)}$ | 1.2 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | 10.0 ${ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 1.5 | $<0.5^{1)}$ | $<0.5^{1)}$ | 1.0 | 2.2 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 2.0 | $<0.5{ }^{1)}$ | $<0.5{ }^{1)}$ | 0.8 | 1.6 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{27}$ |
| 2.5 | $<0.5^{1)}$ | $<0.5{ }^{1)}$ | 0.8 | 1.4 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 3.0 | $<0.5^{1)}$ | $<0.5{ }^{\text {1) }}$ | 0.8 | 0.9 | 2.2 | 4.5 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 3.5 | $<0.5{ }^{1)}$ | $<0.5{ }^{1)}$ | 0.6 | 0.9 | 2.1 | 4.1 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 4 | $<0.5^{1)}$ | $<0.5{ }^{1)}$ | 0.6 | 0.8 | 1.8 | 3.6 | 9.7 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 5 | $<0.5{ }^{1)}$ | $<0.5{ }^{1)}$ | 0.6 | 0.7 | 1.5 | 2.7 | 7.3 | $10.0{ }^{2)}$ | $10.0{ }^{27}$ |
| 6 | | $<0.5{ }^{1)}$ | 0.5 | 0.6 | 1.4 | 2.4 | 5.5 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 8 | | $<0.5{ }^{1)}$ | $<0.5{ }^{1)}$ | 0.6 | 1.3 | 2.2 | 4.7 | 8.7 | $10.0{ }^{2)}$ |
| 10 | | | $<0.5{ }^{1)}$ | 0.6 | 1.3 | 2.0 | 3.6 | 5.4 | $10.0{ }^{2)}$ |
| 13 | | | | | 1.3 | 1.9 | 3.3 | 5.0 | 9.4 |
| 16 | | | | | 1.2 | 1.8 | 3.2 | 4.4 | 8.0 |
| 20 | | | | | 1.2 | 1.8 | 3.1 | 4.1 | 7.0 |
| 25 | | | | | | 1.7 | 2.8 | 3.8 | 6.5 |
| 32 | | | | | | | 2.7 | 3.7 | 6.2 |
| 40 | | | | | | | | 3.5 | 5.9 |
| 50 | | | | | | | | | 5.5 |
| 63 | | | | | | | | | |

[^1]| | Kurzschlussselektivität BMSO-D..
 Zu
 Schmelzsicherungs-Einsatz DIAZED*
 Im Kurzschlussfall besteht zwischen den LS-Schaltern BMS0-D.. und den vorgeschaltenen Schmelzsicherungen Selektivität bis zu den angegebenen Werten des Selektivitätsgrenzstromes $I_{s}[k A]$ (d.h. bei auftretenden Kurzschlussströmen $I_{k s}$ unter I_{s} löst nur der LS-Schalter aus, bei Kurzschlussströmen darüber sprechen beide Schutzorgane an).
 *) nach EN 60898 D.5.2.b | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BMSO | DIAZED DII-DIV gl/gG | | | | | | | | |
| $\mathrm{In}_{\mathrm{n}}[\mathrm{A}]$ | 10 | 16 | 20 | 25 | 35 | 50 | 63 | 80 | 100 |
| 0.5 | 0.5 | 3.0 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 1.0 | $<0.5^{\text {1) }}$ | $<0.5{ }^{1)}$ | 1.0 | 2.4 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 1.5 | $<0.5{ }^{1)}$ | $<0.5{ }^{1)}$ | 0.7 | 1.2 | 3.5 | 7.7 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 2.0 | $<0.5{ }^{1)}$ | <0.5 ${ }^{1)}$ | 0.6 | 1.0 | 2.8 | 5.8 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 2.5 | $<0.5{ }^{1)}$ | <0.5 ${ }^{\text {1 }}$ | 0.6 | 1.4 | 2.3 | 4.6 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 3.0 | $<0.5{ }^{1)}$ | $<0.5{ }^{1)}$ | 0.6 | 0.9 | 2.3 | 4.3 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 3.5 | $<0.5{ }^{1}$ | $<0.5{ }^{1)}$ | 0.6 | 0.9 | 2.1 | 4.0 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 4 | | <0.5 ${ }^{1)}$ | 0.6 | 0.9 | 2.0 | 3.8 | 9.5 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 5 | | $<0.5{ }^{1)}$ | 0.5 | 0.7 | 1.7 | 3.1 | 7.0 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 6 | | | 0.5 | 0.7 | 1.5 | 2.6 | 5.3 | 9.1 | $10.0{ }^{2)}$ |
| 8 | | | $<0.5{ }^{1)}$ | 0.7 | 1.4 | 2.2 | 3.9 | 6.0 | $10.0{ }^{2)}$ |
| 10 | | | | 0.7 | 1.2 | 1.9 | 3.4 | 5.0 | 9.5 |
| 13 | | | | | 1.2 | 1.8 | 3.2 | 4.6 | 8.6 |
| 16 | | | | | | 1.6 | 2.7 | 4.0 | 7.4 |
| 20 | | | | | | 1.5 | 2.5 | 3.5 | 6.7 |
| 25 | | | | | | | 2.4 | 3.4 | 6.2 |
| 32 | | | | | | | | 2.8 | 5.0 |
| 40 | | | | | | | | | 4.8 |

[^2]| | Kurzschlussselektivität BMSO-B..
 ZU
 Schmelzsicherungs-Einsatz DIAZED*
 Im Kurzschlussfall besteht zwischen den LS-Schaltern BMS0-B.. und den vorgeschaltenen Schmelzsicherungen Selektivität bis zu den angegebenen Werten des Selektivitätsgrenzstromes $I_{s}[k A]$ (d.h. bei auftretenden Kurzschlussströmen $I_{k s}$ unter I_{s} löst nur der LS-Schalter aus, bei Kurzschlussströmen darüber sprechen beide Schutzorgane an).
 *) nach EN 60898 D. 5.2.b | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BMSO | DIAZED DII-DIV gL/gG | | | | | | | | |
| In [A] | 10 | 16 | 20 | 25 | 35 | 50 | 63 | 80 | 100 |
| 1.0 | $<0.5{ }^{1)}$ | 1.2 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 1.5 | $<0.5^{1)}$ | 1.0 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 2.0 | $<0.5^{1)}$ | $<0.5^{\text {1) }}$ | 0.8 | 1.6 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 2.5 | $<0.5^{1)}$ | $<0.5^{1)}$ | 0.8 | 1.5 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 3.0 | $<0.5^{1)}$ | $<0.5^{\text {1) }}$ | 0.8 | 1.4 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 3.5 | $<0.5{ }^{1)}$ | $<0.5^{\text {1) }}$ | 0.7 | 1.3 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 4 | $<0.5^{1)}$ | $<0.5^{\text {1) }}$ | 0.6 | 1.0 | 3.6 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 5 | $<0.5^{1)}$ | $<0.5^{\text {1) }}$ | 0.6 | 0.9 | 2.0 | 3.5 | 8.5 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 6 | | $<0.5^{\text {1) }}$ | 0.6 | 0.9 | 1.8 | 3.2 | 7.4 | 10.0 ${ }^{2)}$ | $10.0{ }^{2)}$ |
| 8 | | $<0.5^{\text {1) }}$ | 0.5 | 0.8 | 1.6 | 2.6 | 5.2 | 8.3 | $10.0{ }^{2)}$ |
| 10 | | | 0.5 | 0.8 | 1.4 | 2.2 | 3.9 | 6.0 | $10.0{ }^{2)}$ |
| 13 | | | 0.5 | 0.7 | 1.3 | 2.0 | 3.6 | 5.4 | $10.0{ }^{2)}$ |
| 16 | | | | 0.6 | 1.2 | 1.9 | 3.2 | 4.6 | 8.4 |
| 20 | | | | | 1.2 | 1.8 | 3.1 | 4.4 | 7.8 |
| 25 | | | | | 1.2 | 1.8 | 3.0 | 4.2 | 7.3 |
| 32 | | | | | | 1.7 | 2.8 | 3.9 | 6.8 |
| 40 | | | | | | | 2.7 | 3.8 | 6.5 |
| 50 | | | | | | | 2.5 | 3.5 | 5.7 |
| 63 | | | | | | | | | 5.3 |

[^3]| | Kurzschlussselektivität BMSO-C..
 zu
 Schmelzsicherungs-Einsatz DIAZED*
 Im Kurzschlussfall besteht zwischen den LS-Schaltern BMS0-C.. und den vorgeschaltenen Schmelzsicherungen Selektivität bis zu den angegebenen Werten des Selektivitätsgrenzstromes $\mathrm{I}_{\mathrm{s}}[\mathrm{kA}]$ (d.h. bei auftretenden Kurzschlussströmen I_{ks} unter I_{s} löst nur der LS-Schalter aus, bei Kurzschlussströmen darüber sprechen beide Schutzorgane an).
 *) nach EN 60898 D.5.2.b | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BMSO | DIAZED DII-DIV gL/gG | | | | | | | | |
| In [A] | 10 | 16 | 20 | 25 | 35 | 50 | 63 | 80 | 100 |
| 0.75 | 1.0 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 1.0 | $<0.5^{\text {1) }}$ | 1.2 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 1.5 | $<0.5^{\text {1) }}$ | $<0.5{ }^{1)}$ | 1.0 | 2.2 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 2.0 | $<0.5{ }^{1)}$ | $<0.5{ }^{1)}$ | 0.8 | 1.6 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 2.5 | $<0.5^{1)}$ | $<0.5{ }^{1)}$ | 0.8 | 1.4 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 3.0 | $<0.5^{\text {1) }}$ | $<0.5{ }^{1)}$ | 0.8 | 0.9 | 2.2 | 4.5 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 3.5 | $<0.5^{\text {1) }}$ | $<0.5{ }^{1)}$ | 0.6 | 0.9 | 2.1 | 4.1 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 4 | $<0.5^{\text {1) }}$ | $<0.5^{1)}$ | 0.6 | 0.8 | 1.8 | 3.6 | 9.7 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 5 | $<0.5^{\text {1) }}$ | $<0.5{ }^{1)}$ | 0.6 | 0.7 | 1.5 | 2.7 | 7.3 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 6 | | $<0.5{ }^{1)}$ | 0.5 | 0.6 | 1.4 | 2.4 | 5.5 | $10.0{ }^{2)}$ | 10.0 ${ }^{2)}$ |
| 8 | | $<0.5{ }^{1)}$ | $<0.5^{1)}$ | 0.6 | 1.3 | 2.2 | 4.7 | 8.7 | $10.0{ }^{2)}$ |
| 10 | | | $<0.5{ }^{\text {1) }}$ | 0.6 | 1.3 | 2.0 | 3.6 | 5.4 | $10.0{ }^{2)}$ |
| 13 | | | | | 1.3 | 1.9 | 3.3 | 5.0 | 9.4 |
| 16 | | | | | 1.2 | 1.8 | 3.2 | 4.4 | 8.0 |
| 20 | | | | | 1.2 | 1.8 | 3.1 | 4.1 | 7.0 |
| 25 | | | | | | 1.7 | 2.8 | 3.8 | 6.5 |
| 32 | | | | | | | 2.7 | 3.7 | 6.2 |
| 40 | | | | | | | | 3.5 | 5.9 |
| 50 | | | | | | | | | 5.5 |
| 63 | | | | | | | | | |

[^4]| | Kurzschlussselektivität BMS0-D..
 ZU
 Schmelzsicherungs-Einsatz DIAZED*
 Im Kurzschlussfall besteht zwischen den LS-Schaltern BMS0-D.. und den vorgeschaltenen Schmelzsicherungen Selektivität bis zu den angegebenen Werten des Selektivitätsgrenzstromes $I_{s}[k A]$ (d.h. bei auftretenden Kurzschlussströmen $I_{k s}$ unter I_{s} löst nur der LS-Schalter aus, bei Kurzschlussströmen darüber sprechen beide Schutzorgane an).
 *) nach EN 60898 D.5.2.b | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BMSO | DIAZED DII-DIV gl/gG | | | | | | | | |
| $\mathrm{In}^{\text {[}}$ [] | 10 | 16 | 20 | 25 | 35 | 50 | 63 | 80 | 100 |
| 0.5 | 0.5 | 3.0 | 10.0 ${ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0^{2)}$ | $10.0{ }^{2)}$ | $10.0^{2)}$ |
| 1.0 | $<0.5{ }^{1)}$ | $<0.5^{1)}$ | 1.0 | 2.4 | 10.0 ${ }^{2)}$ | $10.0{ }^{2)}$ | $10.0^{2)}$ | $10.0{ }^{2)}$ | $10.0^{2)}$ |
| 1.5 | $<0.5{ }^{\text {1) }}$ | $<0.5{ }^{1)}$ | 0.7 | 1.2 | 3.5 | 7.7 | $10.0^{2)}$ | $10.0{ }^{2)}$ | $10.0^{2)}$ |
| 2.0 | $<0.5{ }^{1)}$ | $<0.5{ }^{1)}$ | 0.6 | 1.0 | 2.8 | 5.8 | $10.0^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 2.5 | $<0.5^{\text {1) }}$ | $<0.5^{1)}$ | 0.6 | 1.4 | 2.3 | 4.6 | $10.0^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 3.0 | $<0.5^{1)}$ | $<0.5^{1)}$ | 0.6 | 0.9 | 2.3 | 4.3 | $10.0^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 3.5 | $<0.5{ }^{\text {1) }}$ | $<0.5^{1)}$ | 0.6 | 0.9 | 2.1 | 4.0 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 4 | | $<0.5^{\text {1) }}$ | 0.6 | 0.9 | 2.0 | 3.8 | 9.5 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 5 | | $<0.5{ }^{\text {1) }}$ | 0.5 | 0.7 | 1.7 | 3.1 | 7.0 | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ |
| 6 | | | 0.5 | 0.7 | 1.5 | 2.6 | 5.3 | 9.1 | $10.0{ }^{2)}$ |
| 8 | | | $<0.5^{1)}$ | 0.7 | 1.4 | 2.2 | 3.9 | 6.0 | $10.0^{2)}$ |
| 10 | | | | 0.7 | 1.2 | 1.9 | 3.4 | 5.0 | 9.5 |
| 13 | | | | | 1.2 | 1.8 | 3.2 | 4.6 | 8.6 |
| 16 | | | | | | 1.6 | 2.7 | 4.0 | 7.4 |
| 20 | | | | | | 1.5 | 2.5 | 3.5 | 6.7 |
| 25 | | | | | | | 2.4 | 3.4 | 6.2 |
| 32 | | | | | | | | 2.8 | 5.0 |
| 40 | | | | | | | | | 4.8 |

[^5] schattierte Bereiche: keine Selektivităt

Kurzschlussselektivitöt zu NH-Schmelzsicherungen

${ }^{1)}$ Selektivitätsgrenzstrom I_{s} liegt unter 0.5 kA .
${ }^{2)}$ Selektivitätsgrenzstrom $I_{s}=$ Bemessungsschaltvermögen I_{cn} des LS-Schalters schattierte Bereiche: keine Selektivität

[^6]| | Im Kur Selektiv strömen *) nach | chlussfa ät bis zu k_{ks} unter I 60898 D | besteht den ange löst nur 5.2.b | Kurz
 chm
 wische
 benen
 LS-Sc | chlu
 Izsic
 den LS erten de ter aus, | ssel erun
 chaltern Selektivi i Kurzsc | ktivi
 s-Ei
 BMS0-D sgrenzs ussströn | | SO-D
 NH-0
 vorges
 A] (d.h sprech | altenen ei auftre beide Sc | chmelzs nden K itzorgan | erungen zschlussn). |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BMSO | NH-00 gl/gG | | | | | | | | | | | |
| $\mathrm{In}[\mathrm{A}]$ | 16 | 20 | 25 | 32 | 35 | 40 | 50 | 63 | 80 | 100 | 125 | 160 |
| 0.5 | 2.1 | $10.0{ }^{21}$ | $10.0{ }^{2}$ | $10.0{ }^{\text {2) }}$ | $10.0{ }^{2)}$ | $10.0{ }^{21}$ | $10.0{ }^{21}$ | $10.0{ }^{2 /}$ | $10.0{ }^{2 /}$ | $10.0{ }^{2)}$ | $10.0{ }^{2 /}$ | $10.0{ }^{21}$ |
| 1.0 | < $0.5{ }^{1)}$ | 0.6 | 1.4 | 4.3 | $10.0{ }^{21}$ | $10.0{ }^{21}$ | $10.0{ }^{21}$ | $10.0{ }^{21}$ | $10.0{ }^{2 /}$ | $10.0{ }^{2 /}$ | $10.0{ }^{2)}$ | $10.0{ }^{21}$ |
| 1.5 | < $0.5{ }^{1}$) | < $0.5{ }^{1)}$ | 0.9 | 1.6 | 2.7 | 4.0 | 8.0 | $10.0{ }^{2 /}$ | $10.0{ }^{2}$ | $10.0{ }^{2}$ | $10.0{ }^{21}$ | $10.0{ }^{21}$ |
| 2.0 | < $0.5{ }^{1}$ | < $0.5{ }^{1)}$ | 0.8 | 1.3 | 2.1 | 3.1 | 6.0 | 8.6 | $10.0{ }^{21}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{21}$ |
| 2.5 | < $0.5{ }^{1}$ | < $0.5{ }^{1)}$ | 0.7 | 1.2 | 1.8 | 2.6 | 4.8 | 6.9 | $10.0{ }^{2}$ | $10.0{ }^{2 /}$ | $10.0{ }^{2 /}$ | $10.0{ }^{21}$ |
| 3.0 | < $0.5{ }^{1}$) | < $0.5{ }^{1)}$ | 0.7 | 1.1 | 1.7 | 2.4 | 4.3 | 6.0 | $10.0{ }^{2)}$ | $10.0{ }^{2}$ | $10.0{ }^{2 /}$ | $10.0{ }^{21}$ |
| 3.5 | < $0.5{ }^{1)}$ | < $0.5{ }^{1)}$ | 0.7 | 1.1 | 1.7 | 2.4 | 4.2 | 5.6 | $10.0{ }^{2}$ | $10.0{ }^{2)}$ | $10.0{ }^{2)}$ | $10.0{ }^{21}$ |
| 4 | < $0.5{ }^{1}$) | < $0.5{ }^{17}$ | 0.7 | 1.0 | 1.6 | 2.2 | 3.8 | 5.2 | 10.0 | $10.0{ }^{2}$ | $10.0{ }^{21}$ | $10.0{ }^{21}$ |
| 5 | | < $0.5{ }^{1)}$ | 0.6 | 0.9 | 1.4 | 1.9 | 3.2 | 4.1 | 7.1 | $10.0{ }^{2 /}$ | $10.0{ }^{2)}$ | $10.0{ }^{21}$ |
| 6 | | < $0.5{ }^{1)}$ | 0.5 | 0.8 | 1.2 | 1.6 | 2.6 | 3.3 | 5.5 | $10.0{ }^{2}$ | $10.0{ }^{2 /}$ | $10.0{ }^{21}$ |
| 8 | | | 0.5 | 0.8 | 1.1 | 1.5 | 2.2 | 2.7 | 4.1 | 8.7 | $10.0{ }^{21}$ | $10.0{ }^{21}$ |
| 10D | | | 0.5 | 0.7 | 1.0 | 1.3 | 1.9 | 2.5 | 3.6 | 7.2 | $10.0{ }^{2)}$ | $10.0{ }^{21}$ |
| 13 | | | | | 1.0 | 1.3 | 1.9 | 2.3 | 3.4 | 6.5 | 9.5 | $10.0{ }^{21}$ |
| 16 | | | | | | 1.1 | 1.6 | 2.0 | 3.0 | 5.5 | 8.0 | $10.0{ }^{21}$ |
| 20 | | | | | | | 1.4 | 1.8 | 2.8 | 5.0 | 7.5 | $10.0{ }^{21}$ |
| 25 | | | | | | | | 1.8 | 2.7 | 4.8 | 7.0 | $10.0{ }^{21}$ |
| 32 | | | | | | | | | 2.4 | 4.1 | 6.2 | 9.3 |
| 40 | | | | | | | | | | 4.0 | 6.0 | 9.0 |

[^7]Kurzschlussselektivität zu Leistungsschalter MC1 und MC2

	Selektivitätsgrenzstrom $I_{S}[k A]$ für Selektivität zwischen BMSO-B... und MC... (Überlast- und Kurzschlussauslöser MC.. auf max. Wert einstellen)														
BMSO	$\begin{aligned} & \text { MC...1-A... } \\ & \mathrm{I}_{\mathrm{cu}}=25(50) \mathrm{kA} \end{aligned}$						$\begin{gathered} \text { MC...2-A... } \\ \mathrm{I}_{\mathrm{cu}}=25(50)(100)(150) \mathrm{kA} \end{gathered}$								
BMSO-B..	40	50	63	80	100	125	40	50	63	80	100	125	160	200	250
1	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
2	2	15	15	15	15	15	3	15	15	15	15	15	15	15	15
3	1.2	2	3	3	10	15	1.5	1.5	3	5	15	15	15	15	15
4	1.2	2	3	3	8	15	1.2	1.5	3	4	15	15	15	15	15
6	1.2	2	2.5	3	5	10	1.2	1.5	2.5	3	15	15	15	15	15
10	1.2	1.5	2	2	4	10	1	1.5	2.5	3	10	10	10	10	10
13	1	1.5	2	2	4	10	1	1.2	2	3	10	10	10	10	10
16	1	1.2	1.5	2	3	8	1	1.2	1.5	2.5	10	10	10	10	10
20	0.8	1.2	1.5	1.5	3	8	1	1.2	1.5	1.5	10	10	10	10	10
25	0.7	1.2	1.5	1.5	3	7	0.8	1	1.5	2	10	10	10	10	10
32	-	1.2	1	1.5	2	6	-	1	1.5	2	8	8	8	8	10
40	-	-	1	1.5	2	5	-	-	1.2	1.5	7	7	7	7	10
50	-	-	-	1.2	1.5	4	-	-	-	1.5	6	6	6	6	10
63	-	-	-	-	1.5	3	-	-	-	-	6	6	6	6	10

Selektivitätsgrenzstrom $I_{S}[\mathrm{KA}]$ für Selektivität zwischen BMSO-C... und MC... (Überlast- und Kurzschlussauslöser MC.. auf max. Wert einstellen)

$\left.\right\|_{\mathrm{BMSO}} ^{\mathrm{MC}}$BMSO-C..	(Überlast- und Kurzschlussauslöser MC.. auf max. Wert einstellen)														
	$\begin{aligned} & \text { MC...1-A... } \\ & \mathrm{I}_{\mathrm{cu}}=25(50) \mathrm{kA} \end{aligned}$						$\begin{gathered} \text { MC...2-A... } \\ \mathrm{I}_{\mathrm{cu}}=25(50)(100)(150) \mathrm{kA} \end{gathered}$								
	40	50	63	80	100	125	40	50	63	80	100	125	160	200	250
0.5	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
1	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
2	2	15	15	15	15	15	3	15	15	15	15	15	15	15	15
3	1.2	2	3	3	10	15	1.5	1.5	3	5	15	15	15	15	15
4	1.2	2	3	3	8	15	1.2	1.5	3	4	15	15	15	15	15
6	1.2	2	2.5	3	5	10	1.2	1.5	2.5	3	15	15	15	15	15
10	1.2	1.5	2	2	4	10	1	1.5	2.5	3	10	10	10	10	10
13	1	1.5	2	2	4	10	1	1.2	2	3	10	10	10	10	10
16	1	1.2	1.5	2	3	8	1	1.2	1.5	2.5	10	10	10	10	10
20	0.8	1.2	1.5	1.5	3	8	1	1.2	1.5	1.5	10	10	10	10	10
25	0.7	1.2	1.5	1.5	3	7	0.8	1	1.5	2	10	10	10	10	10
32	-	1.2	1	1.5	2	6	-	1	1.5	2	8	8	8	8	10
40	-	-	1	1.5	2	5	-	-	1.2	1.5	7	7	7	7	10
50	-	-	-	1.2	1.5	4	-	-	-	1.5	6	6	6	6	10
63	-	-	-	-	1.5	3	-	-	-	-	6	6	6	6	10

	Selektivitätsgrenzstrom $\mathrm{I}_{\mathrm{S}}[\mathrm{kA}]$ für Selektivität zwischen BMS0-D... und MC... (Überlast- und Kurzschlussauslöser MC.. auf max. Wert einstellen)														
	$\begin{aligned} & \text { MC...1-A... } \\ & \mathrm{I}_{\mathrm{cu}}=25(50) \mathrm{kA} \end{aligned}$						$\begin{gathered} \text { MC...2-A... } \\ \mathrm{I}_{\mathrm{cu}}=25(50)(100)(150) \mathrm{kA} \end{gathered}$								
BMSO-D..	40	50	63	80	100	125	40	50	63	80	100	125	160	200	250
0.5	9	15	15	15	15	15	9	15	15	15	15	15	15	15	15
1	0.5	0.7	1.1	1.9	4.2	15	0.5	0.7	1.1	1.9	4.2	15	15	15	15
1.5	0.3	0.6	0.8	1.1	1.6	2.6	0.3	0.6	0.8	1.1	1.6	2.6	5	15	15
2	0.3	0.5	0.75	0.95	1.4	2.4	0.3	0.5	0.75	0.95	1.4	2.4	4.5	10	15
2.5	0.3	0.5	0.75	0.95	1.3	2.3	0.3	0.5	0.75	0.95	1.3	2.3	4.2	9	15
3	0.3	0.5	0.7	0.9	1.3	2.1	0.3	0.5	0.7	0.9	1.3	2.1	3.6	7	15
3.5	0.3	0.5	0.7	0.9	1.3	2	0.3	0.5	0.7	0.9	1.3	2	3.3	5.6	10
4	0.3	0.5	0.7	0.9	1.3	1.9	0.3	0.5	0.7	0.9	1.3	1.9	3	4.7	8
5	0.3	0.5	0.7	0.9	1.3	1.9	0.3	0.5	0.7	0.9	1.3	1.9	3	4.4	7
6	0.3	0.5	0.6	0.9	1.3	1.8	0.3	0.5	0.6	0.9	1.3	1.8	2.8	4	6
8	0.3	0.3	0.6	0.75	1	1.3	0.3	0.3	0.6	0.75	1	1.3	1.8	2.7	4
10	0.3	0.3	0.6	0.75	0.95	1.2	0.3	0.3	0.6	0.75	0.95	1.2	1.7	2.4	3.6
13	0.3	0.3	0.5	0.7	0.9	1.1	0.3	0.3	0.5	0.7	0.9	1.1	1.6	2.2	3.2
16	-	0.3	0.5	0.65	0.8	1.1	-	0.3	0.5	0.65	0.8	1.1	1.5	2.1	3
20	-	-	0.5	0.65	0.8	1.1	-	-	0.5	0.65	0.8	1.1	1.4	2.1	3
25	-	-	0.5	0.65	0.8	1.1	-	-	0.5	0.65	0.8	1.1	1.4	1.9	2.7
32	-	-	-	-	0.8	1.1	-	-	-	-	0.8	1.1	1.4	1.9	2.7
40	-	-	-	-	-	1	-	-	-	-	-	1	1.4	1.8	2.6

Belastbarkeit bei aneinandergereihten Leitungsschutzschalter Serie BMSO

Zulässige Klemmungen

Leiter- Querschnitt	Anzahl der Einzelleiter starre, einadrige Cu-Leiter					
$\left[\mathbf{m m}^{2}\right]$	1	2	3	4	5	6
1,5	+	+	+	+	+	-
2,5	+	+	+	-	-	-
4	+	+	+	-	-	-
6	+	+	+	-	-	-
10	+	+	-	-	-	-
16	+	-	-	-	-	-
25	+	-	-	-	-	-

Leiter- Querschnitt	Anzahl der Einzelleiter starre, mehradrige Cu-Leiter					
$\left[\mathbf{m m}^{\mathbf{2}}\right]$	1	2	3	4	5	6
10	+	+	-	-	-	-
16	+	-	-	-	-	-
25	+	-	-	-	-	-

Leiter- Querschnitt	Anzahl der Einzelleiter flexible Cu-Leiter					
$\left[\mathrm{mm}^{2}\right]$	$1^{* *}$	2^{*}	3^{*}	4^{*}	5^{*}	6^{*}
1,5	+	-	-	+	+	-
2,5	+	-	+	-	-	-
4	+	+	+	-	-	-
6	+	+	+	-	-	-
10	+	+	-	-	-	-
16	+	-	-	-	-	-
25	+	-	-	-	-	-

*) ohne Aderendhülse
**) mit Aderendhülse

Leiter- Querschnitt	Kombinationen verschiedener Querschnitte flexibler Cu-Leiter untereinander						
$\left[\mathrm{mm}^{2}\right]$	zulässige Varianten (ohne Aderendhülsen)						
1,5	+	-	-	-	-	-	-
2,5	+	+	-	-	+	-	-
4	-	+	+	-	-	+	-
6	-	-	+	+	+	-	+
10	-	-	-	+	-	+	-
16	-	-	-	-	-	-	+
25	-	-	-	-	-	-	-

+	zulässig
-	nicht zulässig

Für starre ein- und mehradrige CU-Leiter sind keine Kombinationen zulässig!

Schaltbilder
1-polig 1+N 2-polig

3-polig

4-polig

$3+N$

Abmessungen

Artikelnummer

Leitungsschutzschalter, Serie BMSO, 10kA, 1-polig

Bemessungsstrom	Type	Bestellnummer
Kennlinie B		
2 A	BMSO B 2/1	BM018102
4 A	BMSO B 4/1	BMO18104
6 A	BMSO B $6 / 1$	BMO18106
10 A	BMSO B 10/1	BM018110
13 A	BMSO B 13/1	BMO18113
16 A	BMSO B 16/1	BMO18116
20 A	BMSO B 20/1	BM018120
25 A	BMSO B 25/1	BMO18125
32 A	BMSO B 32/1	BMO18132
40 A	BMSO B 40/1	BMO18140
50 A	BMSO B 50/1	BMO18150
63 A	BMSO B 63/1	BMO18163

Kennlinie C		
1 A	BMSO C $1 / 1$	BM017101
2 A	BMSO C $2 / 1$	BMO17102
4 A	BMSO C 4/1	BMO17104
6 A	BMSO C $6 / 1$	BM017106
10 A	BMSO C 10/1	BM017110
13 A	BMSO C $13 / 1$	BM017113
16 A	BMSO C 16/1	BM017116
20 A	BMSO C $20 / 1$	BMO17120
25 A	BMSO C $25 / 1$	BM017125
32 A	BMSO C 32/1	BMO17132
40 A	BMSO C 40/1	BMO17140
50 A	BMSO C 50/1	BM017150
63 A	BMSO C $63 / 1$	BMO17163

Bemessungsstrom	Type	Bestellnummer
Kennlinie D		
2 A	BMSO D 2/1	BM019102
4 A	BMSO D 4/1	BM019104
6 A	BMSO D 6/1	BM019106
10 A	BMSO D 10/1	BM019110
13 A	BMSO D 13/1	BM019113
16 A	BMSO D 16/1	BMO19116
20 A	BMSO D 20/1	BMO19120
25 A	BMSO D 25/1	BM019125
32 A	BMSO D 32/1	BM019132
40 A	BMSO D 40/1	BM019140
50 A	BMSO D 50/1	BM019150
63 A	BMSO D 63/1	BMO19163

Leitungsschutzschalter, Serie BMSO, 10kA, 1-polig mit schaltbarem N-Leiter

Bemessungsstrom	Type	Bestellnummer
Kennlinie B		
2 A	BMSO B 2/1 N	BM018602
4 A	BMSO B 4/1 N	BM018604
6 A	BMSO B 6/1 N	BM018606
10 A	BMSO B 10/1 N	BM018610
13 A	BMSO B 13/1 N	BM018613
16 A	BMSO B 16/1 N	BM018616
20 A	BMSO B 20/1 N	BM018620
25 A	BMSO B 25/1 N	BM018625
32 A	BMSO B 32/1N	BM018632
63 A	BMSO B 63/1 N	BM018663

Kennlinie C		
3 A	BMSOC3/1 N	BM017603
4 A	BMSOC $4 / 1 \mathrm{~N}$	BMO17604
6 A	BMSOC $6 / 1 \mathrm{~N}$	BM017606
10 A	BMSOC $10 / 1 \mathrm{~N}$	BM017610
13 A	BMSOC $13 / 1 \mathrm{~N}$	BM017613
16 A	BMSOC $16 / 1 \mathrm{~N}$	BM017616
20 A	BMSO C $20 / 1 \mathrm{~N}$	BM017620
25 A	BMSO C $25 / 1 \mathrm{~N}$	BM017625
32 A	BMSOC $32 / 1 \mathrm{~N}$	BM017632
40 A	BMSO C $40 / 1 \mathrm{~N}$	BM017640
63 A	BMSOC $63 / 1 \mathrm{~N}$	BM017663

Leitungsschutzschalter, Serie BMSO, 10kA, 2-polig

Bemessungsstrom	Type	Bestellnummer
Kennlinie B		
6 A	BMSO B 6/2	BM018206
10 A	BMSO B 10/2	BM018210
13 A	BMSO B 13/2	BM018213
16 A	BMSO B 16/2	BM018216
20 A	BMSO B 20/2	BM018220
25 A	BMSO B 25/2	BM018225
32 A	BMSO B 32/2	BM018232

Kennlinie C		
1 A	BMSO C 1/2	BM017201
2 A	BMSO C 2/2	BM017202
4 A	BMSO C 4/2	BM017204
6 A	BMSO C 6/2	BM017206
10 A	BMSO C 10/2	BM017210
13 A	BMSO C 13/2	BM017213
16 A	BMSO C 16/2	BM017216
20 A	BMSO C 20/2	BM017220
25 A	BMSO C 25/2	BM017225
32 A	BMSO C 32/2	BM017232
40 A	BMSO C 40/2	BM017240
50 A	BMSO C $50 / 2$	BM017250
63 A	BMSO C 63/2	BM017263

Kennlinie D		
2 A	BMSO D 2/2	BM019202
4 A	BMSO D 4/2	BM019204
6 A	BMSO D 6/2	BM019206
10 A	BMSO D 10/2	BM019210
13 A	BMSO D 13/2	BM019213
16 A	BMSO D 16/2	BM019216
20 A	BMSO D 20/2	BM019220
25 A	BMSO D 25/2	BM019225
32 A	BMSO D 32/2	BM019232
40 A	BMSO D 40/2	BM019240

Leitungsschutzschalter, Serie BMSO, 10kA, 3-polig

Bemessungsstrom	Type	Bestellnummer
Kennlinie B		
2 A	BMSO B 2/3	BM018302
4 A	BMSO B 4/3	BMO18304
6 A	BMSO B $6 / 3$	BMO18306
10 A	BMSO B 10/3	BM018310
13 A	BMSO B 13/3	BMO18313
16 A	BMSO B 16/3	BMO18316
20 A	BMSO B 20/3	BMO18320
25 A	BMSO B 25/3	BMO18325
32 A	BMSO B 32/3	BMO18332
40 A	BMSO B 40/3	BMO18340
50 A	BMSO B 50/3	BMO18350
63 A	BMSO B 63/3	BMO18363

Kennlinie C		
1 A	BMSO C $1 / 3$	BMO17301
2 A	BMSO C $2 / 3$	BMO17302
4 A	BMSO C $4 / 3$	BM017304
6 A	BMSO C $6 / 3$	BM017306
10 A	BMSO C 10/3	BMO17310
13 A	BMSO C 13/3	BM017313
16 A	BMSO C 16/3	BMO17316
20 A	BMSO C $20 / 3$	BMO17320
25 A	BMSO C $25 / 3$	BM017325
32 A	BMSO C $32 / 3$	BMO17332
40 A	BMSO C 40/3	BM017340
50 A	BMSO C 50/3	BM017350
63 A	BMSO C $63 / 3$	BMO17363

Bemessungsstrom	Type	Bestellnummer
Kennlinie D		
4 A	BMSO D 4/3	BMO19304
6 A	BMSO D 6/3	BMO19306
10 A	BMSO D 10/3	BMO19310
13 A	BMSO D $13 / 3$	BMO19313
16 A	BMSO D 16/3	BM019316
20 A	BMSO D 20/3	BMO19320
25 A	BMSO D $25 / 3$	BMO19325
32 A	BMSO D $32 / 3$	BMO19332
40 A	BMSO D 40/3	BMO19340
50 A	BMSO D 50/3	BMO19350
63 A	BMSO D $63 / 3$	BMO19363

Leitungsschutzschalter, Serie BMSO, 10kA, 3-polig mit schaltbarem N-Leiter

Bemessungsstrom	Type	Bestellnummer
Kennlinie B		
6 A	BMSO B $6 / 3 \mathrm{~N}$	BMO18806
10 A	BMSOB 10/3 N	BMO18810
13 A	BMSOB 13/3N	BMO18813
16 A	BMSO B 16/3 N	BMO18816
20 A	BMSO B 20/3 N	BMO18820
25 A	BMSO B $25 / 3 \mathrm{~N}$	BMO18825
32 A	BMSO B $32 / 3 \mathrm{~N}$	BMO18832
40 A	BMSOB 40/3 N	BMO18840
50 A	BMSOB $50 / 3 \mathrm{~N}$	BMO18850
63 A	BMSO B $63 / 3 \mathrm{~N}$	BMO18863

Bemessungsstrom	Type	Bestellnummer
Kennlinie C		
1 A	BMSOC $1 / 3 \mathrm{~N}$	BMO17801
2 A	BMSOC $2 / 3 \mathrm{~N}$	BMO17802
4 A	BMSOC $4 / 3 \mathrm{~N}$	BMO17804
6 A	BMSOC $6 / 3 \mathrm{~N}$	BMO17806
10 A	BMSOC 10/3 N	BMO17810
13 A	BMSOC $13 / 3 \mathrm{~N}$	BM017813
16 A	BMSOC 16/3N	BMO17816
20 A	BMSO C 20/3 N	BMO17820
25 A	BMSO C $25 / 3 \mathrm{~N}$	BMO17825
32 A	BMSOC $32 / 3 \mathrm{~N}$	BMO17832
40 A	BMSO C 40/3 N	BMO17840
50 A	BMSO C 50/3 N	BMO17850
63 A	BMSO C $63 / 3 \mathrm{~N}$	BMO17863
Kennlinie D		
6 A	BMSO D $6 / 3 \mathrm{~N}$	BM019806
10 A	BMSO D 10/3 N	BMO19810
16 A	BMSO D 16/3 N	BM019816
20 A	BMSO D 20/3 N	BMO19820
25 A	BMSO D 25/3 N	BMO19825
32 A	BMSO D 32/3 N	BMO19832
40 A	BMSO D 40/3 N	BMO19840
50 A	BMSO D 50/3 N	BMO19850
63 A	BMSO D 63/3 N	BMO19863

Leitungsschutzschalter, Serie BMSO, 10kA, 4-polig

Bemessungsstrom	Type	Bestellnummer
Kennlinie C		
6 A	BMSO C $6 / 4$	BMO17406
10 A	BMSO C 10/4	BMO17410
16 A	BMSO C 16/4	BMO17416
20 A	BMSO C 20/4	BMO17420
25 A	BMSO C $25 / 4$	BMO17425
32 A	BMSO C $32 / 4$	BMO17432
40 A	BMSO C 40/4	BMO17440
50 A	BMSO C 50/4	BMO17450
63 A	BMSO C $63 / 4$	BMO17463
Kennlinie D		
6 A	BMSO D $6 / 4$	BMO19416

[^0]: ${ }^{1)}$ Selektivitätsgrenzstrom I_{s} liegt unter 0.5 kA .
 ${ }^{2)}$ Selektivitäts grenzstrom $I_{s}=$ Bemessungsschaltvermögen $I_{c n}$ des LS-Schalters schattierte Bereiche: keine Selektivität

[^1]: ${ }^{1)}$ Selektivitäts grenzstrom I_{s} liegt unter 0.5 kA .
 ${ }^{2)}$ Selektivitätsgrenzstrom $I_{s}=$ Bemessungsschaltvermögen $I_{\text {cn }}$ des LS-Schalters schattierte Bereiche: keine Selektivität

[^2]: ${ }^{1)}$ Selektivitätsgrenzstrom I_{s} liegt unter 0.5 kA .
 ${ }^{2)}$ Selektivitätsgrenzstrom $I_{s}=$ Bemessungsschaltvermögen $I_{c n}$ des LS-Schalters schattierte Bereiche: keine Selektivität

[^3]: ${ }^{1)}$ Selektivitätsgrenzstrom I_{s} liegt unter 0.5 kA .
 ${ }^{2)}$ Selektivitätsgrenzstrom $I_{s}=$ Bemessungsschaltvermögen I_{cn} des LS-Schalters schattierte Bereiche: keine Selektivität

[^4]: ${ }^{1)}$ Selektivitätsgrenzstrom I_{s} liegt unter 0.5 kA .
 ${ }^{2)}$ Selektivitätsgrenzstrom $I_{s}=$ Bemessungsschaltvermögen I_{cn} des LS-Schalters schattierte Bereiche: keine Selektivität

[^5]: ${ }^{1)}$ Selektivitätsgrenzstrom I_{s} liegt unter 0.5 kA .
 ${ }^{2)}$ Selektivitätsgrenzstrom $\mathrm{I}_{\mathrm{s}}=$ Bemessungsschaltvermögen I_{cn} des LS-Schalters

[^6]: ${ }^{1)}$ Selektivitätsgrenzstrom I_{s} liegt unter 0.5 kA .
 ${ }^{2)}$ Selektivitätsgrenzstrom $I_{s}=$ Bemessungsschaltvermögen $I_{c n}$ des LS-Schalters schattierte Bereiche: keine Selektivität

[^7]: ${ }^{1)}$ Selektivitätsgrenzstrom I_{s} liegt unter 0.5 kA
 ${ }^{2)}$ Selektivitätsgrenzstrom $I_{s}=$ Bemessungsschaltvermögen $I_{c n}$ des LS-Schalters schattierte Bereiche: keine Selektivität

